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Summary

We introduce two new variance estimation procedures by using non-overlapping and

overlapping blocks, respectively. The non-overlapping block (NOB) estimator can be

viewed as the limit of the thinned block bootstrap (TBB) estimator recently proposed

in Guan and Loh (2007), by letting the number of thinned processes and bootstrap

samples therein both increase to infinity. Compared to the latter, the NOB estimator

can be obtained much faster since it does not require any thinning or bootstrap steps,

and is more stable since it is the limit of the latter by using an infinite number of

thinnings and bootstrap samples. The overlapping block estimator further improves the

performance of the NOB with a modest increase in computational time. A simulation

study demonstrates the superiority of the proposed estimators over the TBB estimator.

Some key words: Block Variance Estimator; Inhomogeneous Spatial Poisson Process;

Thinning.

Short Title. Block Variance Estimator for Inhomogeneous Point Processes.

1. Introduction

Let N be a two-dimensional spatial point process that is observed on a domain of

interest D ⊂ R2. Let λ(s) and λ(s1, s2) denote the first- and second-order intensity

functions (e.g., Diggle, 2003) of the process, respectively. In this paper, we will focus on

a flexible class of second-order reweighted stationary processes (SORWS; Baddeley et

al., 2000). Specifically, we assume λ(s1, s2) = λ(s1)λ(s2)g(s1−s2) for some function g(·),

where g(·) is called the pair correlation function (PCF; e.g., Møller and Waagepetersen,

2003). In the special case when λ(s) = λ for some constant λ > 0 for all s ∈ R2, then

the process is further said to be second-order stationary (SOS).



A common interest in practice is to model the first-order intensity function (FOIF)

of the process. For this, we assume that λ(·) can be written as a parametric function of

some observed covariates associated with the process, where the function is completely

determined by a p×1 vector of unknown regression parameters, β. We thus rewrite λ(·)

as λ(·; β). Our main goal is to estimate and make inference on β.

Let |D| denote the area of D. To estimate β, the following Poisson maximum likeli-

hood criterion (Schoenberg, 2004) is often used:

U(β) =
1

|D|
∑

x∈D∩N

log λ(x; β)− 1

|D|

∫
D

λ(s; β) ds. (1)

Let β̂ be the maximizer of (1). Schoenberg (2004) showed that β̂ is consistent for β for

a wide class of spatial-temporal point process models, even if the process is not Poisson.

Waagepetersen (2007) and Guan and Loh (2007) established asymptotic normality for

β̂ for a class of inhomogeneous Neyman-Scott processes and a class of mixing point

processes, respectively.

To make inference on β, the variance of β̂ needs to be estimated. Let Dn be a

sequence of domains that approach to R2 in all directions as n increases, β̂n and β0 be

the estimated and the true parameter vectors, respectively, λ(i)(·; β) be the ith derivative

of λ(·; β) with respect to β, and T be the matrix transpose operator. Guan and Loh

(2007) showed that under some suitable conditions,

Σn = |Dn|Cov(β̂n) ≈ |Dn|(An)−1Bn(An)−1 (2)

where

An =

∫
Dn

λ(1)(s; β0)[λ
(1)(s; β0)]

T

λ(s; β0)
ds (3)

Bn = An +

∫ ∫
Dn

λ(1)(u; β0)[λ
(1)(v; β0)]

T[g(u− v)− 1]dudv. (4)

From (3), it can be seen that An depends only on the FOIF and thus can be calculated

easily once the FOIF has been estimated. From (4), it can be seen that Bn, however,

depends also on the PCF. Often a parametric model for the PCF is first fitted by using,

say a minimum contrast estimation procedure (e.g., Møller and Waagepetersen, 2003),
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and the estimated PCF is then plugged back into (4) in order to estimate Bn. To avoid a

parametric assumption on the PCF, which can be restrictive in some applications, Guan

and Loh (2007) proposed a thinned block bootstrap (TBB) estimator for Bn. Their

procedure involves repeatedly thinning the original point process and then bootstrapping

each thinned realization of the process. The TBB procedure assumes that the process is

SORWS but does not require any specific parametric form for the PCF. A drawback of

this procedure is that it can be very time consuming due to the repeated thinning and

bootstrap steps. The goal of this paper is to propose two alternative variance estimation

procedures that are built upon the TBB estimator but can be performed much more

quickly. Furthermore, it will become clear that the proposed procedures also outperforms

the TBB approach by having both smaller bias and variance.

2. Background on the TBB procedure

The TBB procedure makes use of the fact that any SORWS process can be thinned

to be SOS by applying proper thinning weights. For example, Guan and Loh (2007)

considered the following thinned process:

Ψn = {x : x ∈ N, P (x is retained) = min
s∈Dn

λ(s; β0)/λ(x; β0)}. (5)

Clearly Ψn is SOS on Dn since its first- and second-order intensity functions can be

respectively written as:

λn = min
s∈Dn

λ(s; β0) and λ2,n(s1, s2) = (λn)2g(s1 − s2).

For each thinned process, Ψn, Guan and Loh (2007) defined the following statistic:

Sn =
∑

x∈Ψn∩Dn

λ(1)(x; β0).

By using the fact that Ψn is SOS, it can be seen that

Cov(Sn) = λn

∫
Dn

λ(1)(s; β0)[λ
(1)(s; β0)]

Tds + (λn)2(Bn − An), (6)

where An and Bn are given as in (3) and (4), respectively. In order to estimate Bn,

it is sufficient to estimate the covariance matrix of Sn. For this Guan and Loh (2007)

proposed the following block bootstrap algorithm:
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1. Obtain a thinned realization of the process as in (5) with β0 being replaced by β̂n.

2. Divide Dn into kn nonoverlapping subblocks, Di
ln

, i = 1, · · · , kn, where ln signifies

the size of each subblock. For each Di
ln

, let ci denote the “center” of the subblock.

For each thinned process, resample with replacement for B times kn subblocks from

Di
ln

, i = 1, · · · , kn. For the bth collection of the resampled random subblocks, let

Jb be the set of kn random indices sampled from {1, · · · , kn} that are associated

with the selected subblocks. Define

Sb
n =

kn∑
i=1

∑
x∈Ψn∩D

Jb(i)

l(n)

λ(1)(x− cJb(i) + ci; β̂n),

Obtain the sample covariance matrix for Sb
n, b = 1, · · · , B.

3. Repeat Steps 1 and 2 for M times and use the average of the resulting sample

covariance matrices as the estimate for the covariance matrix given in (6).

Let Ĉov(Sn) be the obtained estimator from the above algorithm. Then (6) implies the

following estimator for Bn:

B̂n = Ĉov(Sn)/λ̂2
n −

∫
Dn

λ(1)(s; β̂n)[λ(1)(s; β̂n)]Tds/λ̂n + Ân, (7)

where

λ̂n = min
s∈Dn

λ(s; β̂n),

Ân =

∫
Dn

λ(1)(s; β̂n)[λ(1)(s; β̂n)]T

λ(s; β̂n)
ds.

3. The Proposed Variance Estimation Procedures

3·1 The algorithms

Throughout this section, let λ(·) and λ(1)(·) denote λ(·; β̂n) and λ(1)(·; β̂n), respec-

tively. Let Ψm
n denote the mth thinned realization of the process. For a fixed M and by
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letting B →∞, some simple derivations suggest that Ĉov(Sn) converges to

Cov(Sb
n|Ψn ∩Dn)

=
1

knM

M∑
m=1

kn∑
i=1

kn∑
j=1

∑
x∈Dj

ln
∩Ψm

n

∑
y∈Dj

ln
∩Ψm

n

λ(1)(x− cj + ci)[λ
(1)(y − cj + ci)]

T

− 1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑
x∈D

j1
ln
∩Ψm

n

∑
y∈D

j2
ln
∩Ψm

n

λ(1)(x− cj1 + ci)[λ
(1)(y − cj2 + ci)]

T.

Let
∑

x

∑6=
y denote summation over x and y such that x 6= y. Now let M → ∞, then

the above further converges to

E[Cov(Sb
n|Ψn ∩Dn)|N ] = λ2

nV̂n,1 − λ2
nV̂n,2 + λnV̂n,3 − λnV̂n,3/kn, (8)

where

V̂n,1 =
1

kn

kn∑
i=1

kn∑
j=1

∑
x∈Dj

ln
∩N

6=∑
y∈Dj

ln
∩N

λ(1)(x− cj + ci)[λ
(1)(y − cj + ci)]

T

λ(x)λ(y)
, (9)

V̂n,2 =
1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑
x∈D

j1
ln
∩N

6=∑
y∈D

j2
ln
∩N

λ(1)(x− cj1 + ci)[λ
(1)(y − cj2 + ci)]

T

λ(x)λ(y)
, (10)

V̂n,3 =
1

kn

kn∑
i=1

kn∑
j=1

∑
x∈Dj

ln
∩N

λ(1)(x− cj + ci)[λ
(1)(x− cj + ci)]

T

λ(x)
. (11)

Note that E(V̂n,3) ≈
∫

Dn
λ(1)(s)[λ(1)(s)]Tds if β̂n ≈ β0. In view of (7)-(11), it is natural

to consider the following estimator for Bn:

B̂n = V̂n,1 − V̂n,2 + Ân, (12)

where V̂n,1 and V̂n,2 are defined as in (9) and (10), respectively. Note that the term

−λnV̂n,3/kn in (8) is not included in (12) since it’s ignorable due to kn → ∞. Vn,1 and

V̂n,2 here can be calculated directly without incurring any thinning or bootstrapping

steps. Therefore, significant computational gains can be achieved. See Appendix A for

the computational details. Furthermore, note that the new estimator can be intuitively

regarded as the limiting version of the TBB estimator by letting both B and M increase
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to infinity. Thus it is reasonable to expect (12) to be more stable than any TBB estimator

using a fixed B and/or M .

From (9) and (10), it can be seen that V̂n,1 and V̂n,2 are both defined in terms of

the point process N observed on the nonoverlapping blocks Di
ln

, i = 1, · · · , kn. A direct

extension of the above procedure is to use overlapping blocks. For this let Dln be the

subblock centered at the origin and let D∗
n = {s : Dln + s ⊂ Dn}. Define Ds

ln
= Dln + s.

The new versions of (9) and (10) using overlapping blocks are given as follows:

V̂n,1 =
1

|D∗
n|

kn∑
i=1

∫
D∗

n

∑
x∈Ds

ln
∩N

6=∑
y∈Ds

ln
∩N

λ(1)(x− cj + ci)[λ
(1)(y − cj + ci)]

T

λ(x)λ(y)
ds, (13)

V̂n,2 =
1

|D∗
n|

kn∑
i=1

∫
Du

ln

∫
Dv

ln

∑
x∈Du

ln
∩N

6=∑
y∈Dv

ln
∩N

λ(1)(x− u + ci)[λ
(1)(y − v + ci)]

T

λ(x)λ(y)
dudv. (14)

Compared to (9) and (10), (13) and (14) utilize more information from the data. Intu-

itively, we would expect them to be more stable than their counterparts, (9) and (10),

which are both based on nonoverlapping blocks. Indeed, overlapping blocks have been

found to yield improved variance estimators for block bootstrap (e.g., Künsch, 1989). A

similar result is anticipated to be true in the current setting.

To calculate (13) and (14), we need to approximate the integral terms involved. One

obvious approach is to “tile” the region D∗
n by a grid consisting of k∗n “small” cells, and

then approximate the integrals by the corresponding Riemann sums (e.g., Politis and

Sherman, 2001). This leads to the following estimates for V̂n,1 and V̂n,2:

V̂n,1 =
1

k∗n

kn∑
i=1

k∗n∑
j=1

∑
x∈Dj

ln
∩N

6=∑
y∈Dj

ln
∩N

λ(1)(x− cj + ci)[λ
(1)(y − cj + ci)]

T

λ(x)λ(y)
, (15)

V̂n,2 =
1

(k∗n)2

kn∑
i=1

k∗n∑
j1=1

k∗n∑
j2=1

∑
x∈D

j1
ln
∩N

6=∑
y∈D

j2
ln
∩N

λ(1)(x− cj1 + ci)[λ
(1)(y − cj2 + ci)]

T

λ(x)λ(y)
. (16)

Note that (9) and (10) can be viewed as special cases of (15) and (16) with k∗n = kn,

respectively.

3·2 Theoretical Justifications
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Let V̂n = V̂n,1− V̂n,2, where V̂n,1 and V̂n,2 are given as in (9) and (10) in the nonover-

lapping case or (13) and (14) in the overlapping case. We would like to show that V̂n

converges to

Vn = Bn − An =
kn∑
i=1

kn∑
j=1

∫
Di

ln

∫
Dj

ln

λ(1)(u; β0)λ
(1)(v; β0)[g(u− v)− 1]dudv.

To show this, assume that for all β in a small neighborhood of β0,

λ(s; β) > 0, λ(i)(s; β) < ∞, i = 1, 2. (17)

In addition, conditions on the cumulant function of the process are needed. Let ds be an

infinitesimal region containing s and N(ds) be the number of events from N contained

in ds. Define the kth-order cumulant functions of N as:

Qk(s1, · · · , sk) = lim
|dsi|→0

{
Cum[N(ds1), · · · , N(dsk)]

|ds1| · · · |dsk|

}
, i = 1, · · · , k,

where Cum(Y1, · · · , Yk) is the coefficient of ikt1 · · · tk in the Taylor series expansion of

log{E[exp(i
∑k

j=1 Yjtj)]} about the origin (e.g. Brillinger, 1975) and Yi, i = 1, · · · , k

are a set of random variables. The cumulant functions are a useful tool to describe the

dependence between events of the process, where close-to-zero values of the cumulant

functions often indicate near independence. In the extreme case of complete indepen-

dence, i.e., when N is Poisson, then Qk(s1, · · · , sk) = 0 if at least two of s1, · · · , sk are

different. In terms of the cumulant functions, assume

sup
s1

∫
· · ·

∫
|Qk(s1, · · · , sk)|ds2 · · · dsk < ∞ for k = 2, 3, 4. (18)

Condition (18) is a fairly weak condition. It holds for broad class of inhomogeneous mod-

els including, but not limited to, the log Gaussian Cox Process (Møller et al., 1998), the

inhomogeneous Neyman-Scott process (Waagepetersen, 2007), and any inhomogeneous

process that is obtained by thinning a homogeneous process satisfying this condition.

The following theorem establishes the consistency of V̂n.

Theorem 1. Assume Conditions (17) and (18). If |Dln| = o(|Dn|1/2) and |Dn|1/2(β̂n −

β0) = Op(1), then (V̂n − Vn)/|Dn|
L2→ 0.
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Proof. The proof of the theorem can be found in Appendix B.

The condition on the convergence rate of β̂n to β0 is a standard assumption and

holds under conditions given Guan and Loh (2007). The condition on the subblock size

is undesirable. However, a further relaxation of this condition appears to be difficult. It

may not be reasonable after all to set the subblock size to be of order larger than or equal

to |Dn|1/2 given |Dn|1/2(β̂n − β0) = Op(1). Finally, note that although we are focusing

on estimating the variance of β̂n in this paper, the proposed methods can be applied to

estimate the variance for any statistic taking the form
∑

x∈N∩Dn
Z(x; β0). This can be

done simply by replacing λ(1)(·) with Z(·)λ(·) in the definitions of V̂n.

4. A Simulation Study

To illustrate the superior performance of the proposed methods over the TBB ap-

proach, we simulated realizations from an inhomogeneous Neyman-Scott process model

on a unit square. The FOIF of the process was λ(s) = α + βX(s), where α = 7.02,

β = 2 and X(s) was the same covariate process as being used in Guan and Loh (2007).

For each simulation, we first simulated a homogeneous Poisson process as the parent

process, where the intensity of the process κ = 50. For each parent, we then generated

a Poisson number of offspring. The position of each offspring relative to its parent was

determined by a radially symmetric Gaussian random variable (e.g. Diggle, 2003) with a

standard deviation ω = 0.02, 0.04, which represent relatively strong and weak clustering,

respectively.

One thousand realizations of the process were simulated for each ω value. For each

realization, the TBB estimator as well as the proposed methods were all applied. For the

TBB estimator, B = 499, 999 and M = 5, 10, 20. The different B and M values allowed

us to assess the sensitivity of the performance of the TBB estimator to these parameters.

For all estimators, the subblock size was 0.25×0.25, which led to kn = 16 nonoverlapping

blocks. For the estimator using overlapping blocks, k∗n = 64, 144, where k∗n was the num-

ber of small cells used to calculate (15) and (16). For the convenience of discussion, let

NOB and OB denote the nonoverlapping and overlapping block estimators, respectively.

Table 1 shows the bias, standard deviation (STD) and computational time (CT) for
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each estimator. For all estimators, there is a negative bias. The bias for ω = 0.04 is

larger, which is likely due to the fact that the range of dependence is larger in this case.

The NOB and OB appear to be less biased than TBB. This is due to the removal of the

term −λnV̂n,3/kn in (12), which reduces the bias. For TBB, the STD generally decreases

with M (or B) for a fixed B (or M). The effect of B is not very significant in this

example, likely because both B values being considered here are much larger than the

number of blocks to be resampled from. Note all the STDs for TBB are larger than their

counterparts for NOB. This is as expected. For OB, the STDs are significantly smaller

than those for NOB. This provides evidence for the importance of using overlapping

blocks. The number of overlapping blocks, however, does not need to extremely big to

achieve the most benefit. In terms of CT, NOB is the most computationally efficient.

The CT for NOB for 1,000 simulations is only around 1/18 of that for OB when k∗n = 64,

and around 1/69 of the smallest CT for TBB (when M = 5 and B = 499). For OB, the

CT for k∗n = 64 is only 1/4 of the smallest CT for TBB. The CT quickly increases when

k∗n = 144. Even in this case, it is only slightly larger than the smallest CT for TBB. The

CT for TBB increases roughly in proportion with M and B. In summary, the proposed

new methods greatly outperform the TBB approach in both accuracy and CT.

Appendix A

Computational Details

For V̂n,1 given in (15), it can be seen that V̂n,1 = V̂ a
n,1 − V̂ b

n,1, where

V̂ a
n,1 =

1

k∗n

kn∑
i=1

k∗n∑
j=1

[ ∑
x∈Dj

ln
∩N

λ(1)(x− cj + ci)

λ(x)

][ ∑
x∈Dj

ln
∩N

λ(1)(x− cj + ci)

λ(x)

]T

,

V̂ b
n,1 =

1

k∗n

kn∑
i=1

k∗n∑
j=1

∑
x∈Dj

ln
∩N

λ(1)(x− cj + ci)[λ
(1)(x− cj + ci)]

T

λ(x)2
.

For V̂n,2 given in (16), it can be seen that V̂n,2 = V̂ a
n,2 − V̂ b

n,2, where

V̂ a
n,2 =

1

(k∗n)2

kn∑
i=1

[ k∗n∑
j=1

∑
x∈Dj

ln
∩N

λ(1)(x− cj1 + ci)

λ(x)

][ k∗n∑
j=1

∑
x∈Dj

ln
∩N

λ(1)(x− cj1 + ci)

λ(x)

]T

,
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V̂ b
n,2 =

1

(k∗n)2

kn∑
i=1

k∗n∑
j1=1

k∗n∑
j2=1

∑
x∈D

j1
ln
∩D

j2
ln
∩N

λ(1)(x− cj1 + ci)[λ
(1)(x− cj2 + ci)]

T

λ(x)2
.

V̂n,1 and V̂n,2 in the nonoverlapping case can be obtained easily by noting that k∗n = kn.

Appendix B

Proof of Theorem 1

By a direct application of Taylor series expansion, it can be seen that it’s sufficient

to prove the theorem for β̂n = β0. Here we only outline the proof for the overlapping

block estimator. The proof in the nonoverlapping case follows trivially. Specifically, we

consider the case when V̂n,1 and V̂n,2 are given by (15) and (16), respectively, since they,

but not (13) and (14), are used in practice. To do so, first note that

E(V̂n) =
kn∑
i=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v)[g(u− v)− 1]dudv

− 1

(k∗n)2

kn∑
i=1

k∗n∑
j1=1

k∗n∑
j2=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v)[g(u− v + cj1 − cj2)− 1]dudv.

Therefore,

E(V̂n)− Vn = −
kn∑
i=1

∑
j 6=i

∫
Di

ln

∫
Dj

ln

λ(1)(u)λ(1)(v)[g(u− v)− 1]dudv

− 1

(k∗n)2

kn∑
i=1

k∗n∑
j1=1

k∗n∑
j2=1

∫ ∫
Di

ln

λ(1)(u)λ(1)(v)[g(u− v + cj1 − cj2)− 1]dudv.

The first term in the above is of order o(|Dn|) from the proof of Theorem 2 of Guan and

Loh (2007). The second term is also of order o(|Dn|) due to (17) and (18) and the fact

that for each fixed j1, the number of overlapping blocks that are within ln distance of

Dj1
ln

is of order o(k∗n/kn).

For the variance of V̂n, some tedious yet elementary algebra suggests the variance is

bounded by the following terms:

Ck2
n

(k∗n)2

k∗n∑
j1=1

k∗n∑
j2=1

∫
D

j1
ln
∩D

j2
ln

∫
D

j1
ln
∩D

j2
ln

g(x1 − x2)dx1dx2.
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Ck2
n

(k∗n)2

k∗n∑
j1=1

k∗n∑
j2=1

∫
D

j1
ln
∩D

j2
ln

∫
D

j1
ln

∫
D

j2
ln

|Q3(x1, x2, x3) + 2Q2(x1, x2) + Q2(x2, x3)|dx1dx2dx3,

Ck2
n

(k∗n)2

k∗n∑
j1=1

k∗n∑
j2=1

∫
D

j1
ln

∫
D

j1
ln

∫
D

j2
ln

∫
D

j2
ln

|Q3(x1, x2, x3)|dx1dx2dx3dx4,

Ck2
n

(k∗n)2

k∗n∑
j1=1

k∗n∑
j2=1

[ ∫
D

j1
ln

∫
D

j2
ln

|Q2(x1, x2)|dx1dx2

]2

.

All the above terms are of order |Dn|2/kn due to (17) and (18) and the fact that for each

fixed j1, the number of overlapping blocks that are within ln distance of Dj1
ln

is of order

o(k∗n/kn). Thus Theorem 1 is proved.
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Table 1: Bias, standard deviation (STD) and computational time for 1,000 simulations
(in hours) for the various variance estimators using nonoverlapping blocks (NOB), over-
lapping blocks (OB) and the thinned block bootstrap (TBB). The computational time
are in hours of the cpu time.

OB TBB (B = 499) TBB (B = 999)
ω NOB k∗n = 64 144 M = 5 10 20 M = 5 10 20

BIAS 0.02 -.1233 -.1193 -.1209 -.1271 -.1285 -.1264 -.1286 -.1281 -.1273
0.04 -.1648 -.1652 -.1671 -.1711 -.1696 -.1699 -.1709 -.1712 -.1700

STD 0.02 .1310 .1197 .1193 .1340 .1327 .1330 .1339 .1327 .1326
0.04 .1216 .1114 .1124 .1256 .1240 .1229 .1241 .1241 .1228

TIME 0.02 .0117 .2076 .8745 .8041 1.5229 2.9513 1.4951 2.9204 5.7367
0.04 .0118 .2237 .9487 .8203 1.5418 2.9655 1.5096 2.9499 5.7571
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